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The current distribution in an isothermic isotropically conducting plate
of circular form is investigated theoretically and experimentally, in
the absence and in the presence of an external magnetic field that is
perpendicular to the plate. The general solution of the Riemann-Hil-~
bert boundary value problem has been obtained under these conditions.
The analysis of this solution points to experimental possibilities of
determining parameters of a crystal under consideration such as the
specific electric conductivity (in the absence and in the presence of
an external magnetic field), the mobility of current carriers in it, and
others.

All the Dbasic results of the calculations undertaken were experimentally
verified and quantitatively confirmed in a series of tests carried out on
homogeneous monocrystalline n-germanium (with the specific resist-
ivity of 1.1 ohm cm) at room temperature.

It is known that investigations into the galvanomagnetic phenomena
(longitudinal and transverse magneto-resistance, the usual, ﬁlanar and
longitudinal Hall effects and others) at the present time constitute not
only a means of determining the characteristics of the parameters of
the crystals in question (concentration of current carriers, their mob-
ility, etc.) [1], but serve also as a proven and simple means of ob-
taining important information about the zone structure of crystals
[2~-5].

Such broadening of the circle of problems affecting the sphere of gal-
vanomagnetic investigations already begins not to correspond to the
established traditions of carrying out these investigations on test pieces
of rectangular shape (as a rule, in the form of parallelepipeds), This
lack of correspondence is greater due to a number of completely log-
ical causes, certain requirements as to the geometrical dimensions of
such test pieces (the ratio of length to width) [6] can far from always
be satisfied. We note in this connection that in the study of galvano-
magnetic phenomena in impulsive magnetic fields, for example, the
use of test pieces of circular form would simplify the use of working
volumes of small diameter. This, in the final anélysis, is equivalent
to broadening the scale of magnetic fields that can be used.

The replacement of a rectangular plate by a circular disc enables us
also to simplify a measurement of the parameters of semiconductor
crystals which usually are obtained in circular form.

Below we present theoretical and experimental investigations into
the problem of measuring the galvanomagnetic effects in conducting
crystals having a circular form.

§1. THE GENERAL SOLUTION OF THE PROBLEM OF
ELECTRICAL CURRENT DISTRIBUTION IN A CIR~
CULAR PLATE

Let a finite number of electrodes be fixed to the
side surface of a plate of thicknesshandradius r. The
subtended angles and relative location of these elec-
trodes are not fixed beforehand (Fig, 1a), An external
magnetic field H(0, 0, H,) is homogeneous in the plate
and is oriented normally to it. The currents to be de-
termined in the plate are assumed to be small, such
that their own magnetic field is small in comparison
with the external field and can be neglected.

For an isotropic medium in an isothermic case, on
the basis of the phenomenological theory we have the
following relations between the density of the electric
current and the electrostatic potential [7]:
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"Here jp’ jo are the components of the current den-
sity vector in a cylindrical coordinate system; ¢{p, 6)
is the potential of the electrostatic field; opp(H),
0pg(H), ... are the components of the conductivity
tensor.

Using the current continuity equation and the sym-
metry condition of the coefficients in Eq. (1.1), we
can show that, for the assumptions adopted, the po-
tential ¢(p,8) is a harmonic function and is determined
from the boundary conditions (motion counterclockwise
is assumed as the positive direction of the circulation)

(n2a™)

The condition (1.2) is formulated for the field cur-
rent; it is assumed that recombination is insignificant
and that traps for current carriers are absent on the
surface of the plate. The first condition signifies that
the normal component of the current between electrodes
is zero. The second condition is valid if the specific
electric conductivity of the electrode is many times
larger than ggg(H) of the material of the plate. Then
the arcs agbyi (Fig. 1, a) will be equipotential. In a
majority of cases of practical importance these con-
ditions are well satisfied. Solving the boundary value
problem Egs. (1.2) for ¢(p, 6) we can find the value
of the overall current, I, flowing through the elec-
trodes, and the distribution of the potential on the
boundary of the plate from the formulas
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Fig, 1. a) The diagram of

a disk with electrodes used
to solve the boundary value
problem in the general case;
b) the diagram of a disk with
one pair of symmetrically
located electrodes with the
subtended angle equal to 2a.
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Fig. 2. The relation between ha2(0)

and the angle . Circles indicate

the experimental results. The cal-

culated results, obtained from the

formula (2.9), are marked by the
solid line,
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Fig. 3. The theoretical curve
of the relation between Q and
H for o = r/4, obtained from
the first formula (2.13) for
the case where current car-
riers are absorbed in lat-
tice oscillations. Circles
denote the results of an ex-
perimental check of the re-
lation between Q and H for
the same conditions,
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Fig. 4. The distribution of electric
potentials on the periphery of the
disk for H =0 and @ = 10, 30 and
70°, calculated from the formula
(2.17), is shown by the solid
lines. The results of the corre-
sponding experiments are shown by
dashed lines,
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The funetion
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(z = pe™) (1.4)

holomorphic in a circle, is brought into the analysis.
To find W(z) we obtain the Riemann-Hilbert bound-
ary value problem with discontinuous coefficients from
Eq. (1.2):
Sop (H) U (7, 8) —Gp0 (H)V (r, 8) = 0

for z=re®® for 6,2 <6< 8%, ,

Vir,8) =0 for z=re® for g2 <0< 6,0,
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Instead of (1.3) we have
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It follows from these formulas and the condition
(1.5) that Iy and @y do not depend on the radius r of the
plate; they depend on the dimensions of the electrodes,
their relative locationand the plate thickness h. Taking
into account this circumstance, we take the radius of
the circle to be equal to 1. The function W(z), by
means of inversion, is analytically continued through
the arc gbg (k = 1, ..., p) in the interior of a unit
circle. Then instead of the problem (1.5) we arrive at
the generalized problem of linear union (Riemann's
problem) [8, 91, which can be solved more simply
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¥ (z) for [z]< 4,
Y*(z) =W (z) = U (p, 8) + ¥V (p, 8)
W (z) =4 ¥ (s) for 2| >1, (1.8)
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At the points z = 0 and z = = the piecewise holo-
morphic function ¥(z) is characterized by the expan-
sions -

B (7) = A %2+ 4022 ...,

v-(o=2 B (1.9)

as follows from the third condition (1.5} and (1.8).
The solution of the problem (1.7)—(1.9) is con-

structed in a class of functions which have integrable

singularities at the points g, by (k =1,...,p). The
latter point to an increased density of the electric
current in the neighborhood of the ends of the elec-
trodes.
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Fig. 5. The potential distributions on the

circumference of the disk for various

values of the parameter y for o = 7/4;

1)y =0, 2)x =025, 3)x =0.5, 4)x =
=1.0, 5) X=2.0, 6) x =6.3,

The function ¥(z) vanishes at infinity, and at the
point z = 0 it'assumes the zero value
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The constants Ci = Ag' + iBl(k =1,...,p) in Eq.
(1.11) are connected by the relations
Apga+ By gy = Ay — By (1.13)

In the formula (1.10) the root is taken with the pos-
itive sign, and under the function
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Equations (1.1), expressing the generalizecf Ohm's
law, are written in the complex form

1) = 1o (6, ) — i (0, ) =
=— [0 (H) — oo ()] (32— i 52)-  (1.15)

In obtaining Eq. (1.15) we have used the condition
of symmetry of the conductivity tensor in an isotropic
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Taking into account the Egs. (1.4) and (1.8), we
obtain the sought for currentdistribution in the circular
plate

(1.16)

J(2) = To—ifo = — &[0 (H) — o ()] ¥ () (1.17)

or
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The constants Ck remain to be determined. For this
we must enlist additional boundary conditions. For
this it is sufficient to specify either the potentials on
the electrodes or the values of the currents flowing
through them, or to specify the potentials on certain
electrodes and the currents in the others. Let, for
example, the values of the currents I (k =1,...,p) be
given. The normal component of the current in the
electrodes is given by the formula

Jo (1, 0) = — G, (H)E* (6) - (1.19)

Here, as is easily shown,
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The constants Ay', By'. A,', By',... are determined

from the solution of the system

b

k
—h Y J.(1,0)d0 =

k

3

@

b
Oy

— — sy, (H) { v @ao
0"

(k=1,...,p). (1.21)

We conclude by finding the unknown constants of
the general solution of the problem of current distri-
bution in a circular plate.

§2. A PARTICULAR CASE: A PLATE WITH ONE
PAIR OF ELECTRODES

As an application of the general theory, let us
consider the galvanomagnetic phenomena in a semi-
conductor plate with one pair of symmetrically located
electrodes (Fig. 1b), To fix ideas we take a nonde-
generate n-type semiconductor having a simple zone
structure and an arbitrary absorption mechanism of
current carriers.

To obtain concrete values for the coefficients in
Eq. (1.1), we must turn to the kinetic equation of
Boltzmann, whence we obtain the equation for the cur-
rent {10]

ne? T
1= Tn—<1+(etH/mc)2>E_

3
“rzsc <m>EXH (2.1)
Here e, m and n are the charge, mass and con-
centration of electrons; 7 is the relaxation time; H
is the magnetic field intensity vector; E is the electric
field intensity vector; c is the velocity of light.
The symbol {g) denotes the averaging integral

& ’ .
S g@)dherdr  (a= %)

gy = —2
© =577 )

Its numerical value depends on the absorption mech-
anism of electrons in the semiconductor, where g, T
are the energy and temperature of the electrons, and
ko is Boltzmann's constant. Decomposing Eq. (2.1)
along the appropriate axes of the cylindrical coordi-
nate system, we obtain
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Following the results of the preceding section, for
the given case we have

¥(z) = m—%_—T'ﬁ)—(Zg ~— griza)ytite (72 o gl2)~Yfeme
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Using the formulas of Sokhotskii-Plemel, after a
number of transformations we find the difference of
potentials between the electrodes 2¢g, the overall
current I flowing through the electrodes and the plate
resistance §2. These integral characteristics of the
plate in the general case depend on the physical param-

eters Ay, Ay and the geometrical quantities @ and h
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() (“# ) =

nta
= { (sin (@40 —m) ™" [sin (0 — a)] " dB, (2.8)
A.1°. Let us analyze the formula (2.6) in the ab~-
sence of the magnetic field

4 N0
Q(G’d,h)_?EQ(d,O) =
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Here o is the specific electric conductivity of the
semiconductor, K(k) is a complete elliptic integral of
the first kind. The connection established here between
the plate resistance Q and the conductivity ¢ assumes
a particularly simple form for o = n/4:

m
net <ty h

Qe B =Q0) = o = (2.10)

2°. However, if H =0, then difficulties arise in the
case of arbitrary values of o in calculating the integrals
according to the formula (2.6). The expression for the

plate resistance @ assumes the following simple form
for H =0, when 2« = /2

1 B [Ya(1 —28), Ya (1 + 2e)]

h Vet aeB Ma(l+ 28, Ya(1—2e)] (2.11)

Q (Ag, Mgy B) =

Here B(p, q) is the beta function. Taking into account
the symmetry of the beta function with respect to its
parameters B(p, q) = B(q, p), we finally obtain

1 __cosme

R Aoy B) = mpmmmm = 55 (2.12)

The formula (2.12) is the exact solution of the orig-
inal boundary value problem for o =n/4; it is valid
for any magnetic field (not yet leading to quantization).
We also refer to the two approximate formulas for
weak (uH/c < 1; terms of theorder H? are retained in
the expansions A; and A, with respect to H) and strong
(uH/c > 1) magnetic fields respectively

QH, .. ) =QH)=
- aO[t—2 () 4 R

¢
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(2.13)

Although the plate resistance grows asHincreases,
the magneto-resistance of the semiconductor, as was
to be expected in the framework of the kinetic theory
in the case of H — =, reaches saturation.

B. 1°. The expression for the potential distribution
on the boundary of the plate is obtained from the sec-
ond condition of Eq. (1.6):

MCr

Po(hss Aoy o Qo) = @ + e

g
X S[sin (8 -+ o)1~ [sin (8 — )] 6.

.

(2.14)

The real constant C; is determined from Eq. (2.4)
or (2.5).

In the absence of a magnetic field Eq. (2.14) is re-
duced to the form

Qo (e, Pe) =

{(;pe [1—F (11, cos o}/ K (cos )} for a << o< an

0
T |9 F (1w cos @) /K (cosa)  for ym<<o<a—ua

t
Y1 = arc cos 43

M+ tgda \Ye
tgﬂ 3 _—_> . (2-15>

Here F(, k) is an incomplete elliptic integral and
K(k) is a complete elliptic integral of the first kind.

It should be pointed out that when H = 0, the orig~
inal problem of Riemann-Hilbert becomes a mixed
problem of the theory of holomorphic functions; its
solution is known [8—9, 11]. Therefore the resulting
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Egs. (2.9), (2.10) and (2.15) are also obtained directly
by applying the formula of Keldysh-Sedov.

2°. Let us consider now the potential distribution
on the boundary of the plate, when H = 0 and o = n/4.
In the same way as in obtaining the formulas (2.15),
we assume that the potentials on the electrodes are
given (@gby = Pes @aghy = ~we; Fig. 1,b), and deter-
mine the constant C,; from the relation (2.4). We then
obtain

o (8, @) = @e[1—21t<1—;2e ’ 14;28)]:

_ __8 Yef1~2¢)
= Qe [1 T % 3 7 x

1—2 3—2% 5—2
x<4,4,4;t)],

B Ma(t —28), Yy (1 4+ 28)]
~ BTHa(1—28), Ya(1 £ 28)]

It<1-;28 , 1—228)

(= sin® (6 — Yym)
( 0t ) (2.16)
Here Bt(p, q), It(p,q) are incomplete beta functions,
and B(p, q) is a complete beta function; F(p,1— q;
p +1; t) is a hypergeometric series.
For weak and strong magnetic fields the value of
the parameter ¢, defined by Eq. (2.3), is given re-
spectively by the formulas

_ wH <12
& = —-arctg—— o
1 wWH <171
B=7t—arct-g T.-(—T)—:f . (2.17)

3°, EXPERIMENTAL RESULTS AND COMPARISON WITH THE THEORY

The tests to check certain results of the theory presented here were

carried out on n-germanium having specific resistivity 1.1 ohm cm and ~

possessing a fairly high degree of homogeneity. The measurements
were carried out on a plate with the diameter equal to 29 mm and the
thickness h = 0,87 mm, with two symmetrically located electrodes.
The plane of the disk coincided with the crystallographic plane (111).
The contacts were soldered to the plate with tin containing some anti-~
mony; in the range of currents used they were ohmic. All this reliably
ensured that the boundary conditions formulated in posing the problem
were satisfied. The experiments were carried out at room temperature
over an interval of magnetic fields of 1300 < H < 7900 Qe, by the
compensation method, for two directions of I and H. The generally
adopted precautionary measures for eliminating exposure, effect of
convective heat flows and other disturbances were observed.

A. 1°. The relation between the general resistance, Q, of the
plate and the subtending angle of the electrode, 2c, was experiment-
ally verified in the absence of a magnetic field. From the measured
data ©(0) = f(c) we have constructed the relationship betweench Q(0)
and the angle o, represented by the circles in Fig, 2. In calculating
ohQ(0) we have used the value of o measured on a rectangular plate
which has afterward cut out from the disk under consideration, The
calculated data of the same relation obtained from Eq. (2.9) is shown
in Fig. 2 by the continuous line. The test and theoretical data coin-
cide wholly for almost all angles «. This allows us to recommend the
formula (2.9) for the determination of the specific magnetic con-
ductivity o directly from the measured general resistance  of the
plate. For this it is convenient to use electrodes with the subtended
angles o = 103 45 and 80° for which from Eq. (2.9) we respectively

obtain

2 1

S= 0@, b a=10° ' °= 0, &k, 0 =5°)
: 1

® = 3hG (G, h, 0 = 30°)

(3.1)

2°. It is of interest to measure the general resistance from H. The
relation between  and H was specifically verified for the case o =
= /4. The calculated results, obtained for the case of lattice absorp-
tion from the first formula (2.13) (for the value g = 3100 cm /V sec),
are shown in Fig. 3 by the solid curve; the points here represent
the results of the tests carried out, It follows from Fig. 3 that the ex-
pression obtained here for Q (in a quadratic approximation with respect
to the magnetic field) agrees well with the test results. Therefore,
when working in the region pH/c « 1, the first formula (2.13) together
with the Hall effect data can be used to elucidate the absorption
mechanism of current cairiers. For a known absorption mechanism it
can be used to determine the mobility values.

The second formula (2.13) is also of interest for us, from a view-
point of its practical use. But it is advisable to leave the analaysis of
this problem uatil after this expression has been experimentally veri-
fied.

B. 1°. In Fig. 4 the solid lines represent the theoretical
potential distributions between the electrodes on the circumference of
the disc for H= 0. These were calculated from Eq. (2.15) for three
values o = 10, 30, and 70°. In the same figure the experimental
data (under the conditions assumed here) are shown by the dashed lines.

The potential distribution predicted by the theory agrees fairly
well with the test results. Some slight discrepancies are observed for
small values of &, and they are apparently connected with the effect
of the small inhomogeneities that exist in any crystal. Their appear-
ance for large disk dimensions and smail « seem to be more probable
for a number of reasons.

2°, Considerably more interesting theoretically and more import-
ant in practice are the potential distributions obtained for various H,
which for o= 7/4 are determined by the first expression (2.16), Un-
fortunately, the incompléte beta functions are not tabulated for the
parameter valuesp =(1.— 2€)/4 and q =(1 + 2g)/4 where 0 = & < 1/2,
and the hypergeometric series in terms of which they are expressed
converges very slowly. Therefore the improper integrals determining
the beta functions were calculated by the method of excluding singu-~
larities proposed by L. V. Kantorovich [12], The theoretical curves
of potential distributions on the circumference of the disk, for various
values of the parameter x = Rgo(H)H = ppyH/c, and the experimental
data for x = 0.25 are shown in Fig. 5. The solid lines in this
figure correspond to the potential distribution on the arc biay (see
Fig. 1,b); the dashed lines refer to the arc bya;. The test resuits
agree well with the theory; this enables us to determine experiment-
ally the Hall mobility py = xc/H on test pieces having the form of a
disc.

For this it is convenient to measure the Hall voltage between the
points 00" of the test piece (see Fig. 1,b). From the value of this
voltage we find x by means of the theoretical curve 294/ ¢e = f(x)
(Fig. 6). The value of pp is determined from x (for a given H). In
our tests we obtained 2¢H/¥e = 0,321, which corresponds to x = 0,29;
i = 3180 cm?/V sec. Measurements of the Hall effect on a rectan-
gular plate cut out from this disk gave py = 3100 em?/V sec.

In conclusion we note that a different method of calculating the
fields in semiconductor plates for certain regions, and recommen-
dations for determining the galvanometric parameters are discussed
in [13~15].

The authors thank V. V. Gaiduchenko for hishelp
in carrying out the tests.
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